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Summary 
In this paper we introduce a seismic migration method based on an optimization approach. 3C VSP 

seismic records are used as source data. As a result, a field of vector reflection coefficient is recovered. This 
3C coefficient represents an image of the media. There are two significant features of the proposed method. 
First, it uses input seismic traces as a source function in the back propagation problem. This allows us to use 
initial data recorded only on the well. Second, a strong separation between migration and inversion 
procedures guarantees an efficiency and stability of the algorithm constructed for a solution of the problem. 
It is clear that in this approach the seismic field migrated to any vertical line in an object domain can be 
processed by means of regular VSP techniques. So, reconstruction of the image of the media appears to be an 
inversion procedure applied to migrated data on every vertical line in an investigated geological section. For 
dipping horizons any other direction of the reconstructed profile may be applied. 3C surface data can be also 
migrated in the same way. 
 

Аннотация 
В работе предлагается метод миграции, основанный на оптимизационной постановке. В качестве 

исходных данных используются трехкомпонентные трассы ВСП. В результате формируется 
изображение среды в виде векторного коэффициента отражения. Метод характеризуется двумя 
основными чертами. Во-первых, исходное волновое поле рассматривается в задаче продолжения поля 
с обратным временем в качестве источника. Это позволяет использовать только данные, 
зарегистрированные на скважине. Во-вторых, четкое разделение этапов миграции и инверсии 
гарантирует эффективность и устойчивость алгоритма решения задачи. Очевидно, что при таком 
подходе продолженное поле может быть подвергнуто стандартной обработке данных ВСП на любом 
вертикальном сечении исследуемой области, а процесс построения изображения среды оказывается 
процедурой инверсии в каждом из таких сечений. В случае наклонных границ могут быть 
использованы сечения произвольных направлений. Предложенная процедура также применима и к 
векторным данным наземной сейсморазведки. 

 
1. Introduction 
In this paper we introduce a seismic migration [1] method based on an optimization approach. As  input 

data 3C VSP seismic records are used for a source located at the daytime surface. It is supposed that an 
a’priori reference model has right kinematical characteristics. A pulse form is a given function. 

Let us give a preliminary description of proposed approach before a strict mathematical formulation of 
the problem is made. The first main concept is that a measured wave-field is used not as a boundary 
condition [2] but as a wave-field source for a reverse time propagation problem. Such an approach 
theoretically removes  initial conditions and aperture failures. 

The second concept is an algorithm stages division into wave-field migration and inversion. A wave-
field continuation from a well to a media is a linear problem, but it is also incorrect. In spite of an 
incorrectness of the problem it is possible to propose a stable method of its solution. A section imaging 
problem, i.e. a continued wave-field inversion, is a nonlinear incorrect problem. The described division of 
the algorithm is the mostly effective approach because of an essential a’priori information about media 
characteristics is known. Furthermore, with such approach, it is possible to apply standard VSP processing 
and interpretation techniques to the migrated wave-field. So, the section imaging process can be considered 
as an inversion on every vertical line located inside current media domain. 

Let us consider the wave propagation problem in terms of elastodynamic formulations as follows: 
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where u(r,t) is a displacement vector, L is the Lame’s operator in an inhomogeneous media, and f(r,t) is a 
source function. An operator L corresponds to an unknown media characterized by an acoustic impedance i 
= i(k), where k = k(r) = − (2i)−1∇i  is a vector reflection coefficient. 

Specifying a reference model with an impedance i0 corresponding to a reflection coefficient k0 defines 
an operator L0 such as 
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where  is a tensor defined through a stress tensor , uR̂ 0ˆ ( )σ u 0 is a solution of (1.1) if k = k0. 
Non-reflecting boundary conditions are applied for an object domain Ω. Initial displacements are 

supposed to be zero. As a source information for the migration procedure, vectors of displacements on a well 
Ω1 ⊂ Ω is taken: 
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Thus, a final problem is a reconstruction of an image of a media with an acoustic impedance i(k) and 
recovering of a vector coefficient k(r) at each point r of the domain Ω\Ω0. 
 

2. Wave-field migration 
Let us determine the migrated wave-field for source data u  from the domain Ω1 to Ω as a wave-field 

which yields the best approximation for  on Ωu 1 and satisfies to the Lame’s equation in the domain Ω\Ω1. 
This migrated wave-field u(r,t) is a solution of the following variation problem with constraints: 
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and non-reflecting boundary conditions. This variation problem was solved by means of the Lagrange 
coefficients method.  

A solution of the variation problem yields a value of gra . It allows us to construct the migrated 
wave-field using an iteration minimization techniques. In practice, even the first step gives an acceptable 
approximation for the migrated wave-field. This can be explained by the fact that the first iteration actually 
includes full information on primary reflections.  

d ( )J u

To start the minimization procedure it is necessary to specify an initial approximation u0. We define it as 
a solution of the following equation 
 ( )0
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which satisfies to zero initial conditions when t = T and non-reflecting boundary conditions. 

Formulations (2.1)–(2.2) lead to: 0grad ( ) tJ = −u u

].

. Then, according to a gradient minimization 
procedure, we have for a step α0: 
  1 0 0

0 , , [0,t t Tα= + ∈Ω ∈u u u r
 

3. Inversion of the migrated wave-field 
Let us define the imaging problem as the following: in the domain Ω to determine a reflection coefficient 

k(r), such as corresponding wave-field u = uk provides for the best approximation for  on Ωu 1  as t ∈ [0,T]. 
This statement leads to the following minimization problem: 
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It is obvious that the solution of this problem produces the same result as the inversion of the migrated 
wave-field. Function (2.1) defining the migrated wave-field is quadratic, while function (3.1) is of a higher 
order. So, we would rather deal with the problem specified by (2.1). Note that function (3.1) has the 
following important property originating from a nature of the investigated problem. If the field  exactly 
corresponds to the media, then function (3.1) has only one point of the minimum and Φ

u
min = 0. 

Analyzing the migrated wave-field we can see that it responds to the main characteristics of the reference 
media. To determine them we define a gradient minimization procedure for function (3.1). Also we use the 
method of the Lagrange coefficients for a construction of the Φ(k) gradient. The appropriate Lagrange 



coefficient appears to satisfy to the same reverse time problem as was defined earlier for the migrated wave-
field. 

The detailed analysis of the minimization problem allows us to construct gra . Then we apply the 
gradient method at point k

d ( )Φ k
0  that yields the following result: 
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Formula (3.2) shows that the reflection coefficient is directly defined by the migrated wave-field. Note 
that for the one-dimensional case formula (3.2) yields: 
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where a value of c(k0) can be efficiently computed.  
 

4. Numerical modeling 
The following numerical experiment is performed to test the proposed method. We consider the media 

with one internal horizontal boundary and generate the synthetic 3C VSP wave-field in a depth range of 10–
870 m (fig.1). A source of P-waves is located at the upper boundary of the domain at a distance of 500 m 
from the vertical well. P-wave velocities in the upper and lower layer are 2000 m/s and 3000 m/s, 
respectively, S-wave velocities are equal to the half of the P-wave velocities, a density is constant in the 
whole domain.  

 

 
Fig.1. Synthetic wave-field. X-component is on the left, z-component is on the right. 

 
For computation of synthetic traces we use a uniform finite-difference scheme for the elastodynamic 

equation [3]. A spatial grid size for both coordinates is 1 m, a discretization step for time is 0.2 ms. To 
prevent spurious reflections from the domain boundaries non-reflecting boundary conditions of the second 
order [4] are used. 

The solution of the reverse time problem is measured along a vertical profile located between the shot 
point and the well at the 100 m distance from the well. The corresponding wave-field is shown in fig.2. The 
imaging procedure is performed through the simplified algorithm based on formula (3.3). The resulting 
image of the media presented as a two-component vector reflection coefficient is given in fig.3.  



 
Fig.2. Migrated wave-field (shown in reverse time). X-component is on the left, z-component is on the right. 

 

 
Fig.3. Image of the section. X-component (left) and z-component (right) of the reflection coefficient. 
 
5. Conclusion 
The migration method for 3C wave-fields is presented in this paper. It provides for a reconstruction of an 

image of a media, which is actually a field of a vector reflection coefficient. This result is confirmed 
theoretically and by numerical modeling. Furthermore, a possibility of an imaging by a recovered S-wave 
reflection coefficient is also supposed. There are no reasons not to apply the same approach to surface 3C 
seismic data. 
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