Левянт В.Б. (ЦГЭ), Миряха В.А., Муратов М.В., Петров И.Б. (МФТИ)

Влияние раскрытости и площади слипания трещин на численное моделирование реальных трещиноватых коллекторов нефтегазовых резервуаров

Основные виды трещин нефтегазовых резервуаров

Тип трещин	Высота	Раскрытость	Аспектное отношение (АО)
Мезотрещины	1—10м	от 0,2мм до 1мм	1:1000 – 1:10000
Макротрещины	от 30–50м до 100–150м	от 0,5мм до 2мм	1:10000 – 1:100000

Оценка возможности использования модели бесконечно тонкой трещины (БТТ) при исследовании трещин конечной раскрытости

Линейно упругая модель среды без учёта поглощения и анизотропии

Макротрещина в модели конечной раскрытости

Макротрещина в модели БТТ

Отличие откликов от трещин с конечной раскрытостью и БТТ (1D постановка)

Сопоставление Xсейсмограмм отклика от одиночной трещины

> а) БТТ b) AO=1:1000 c) AO=1:100

Гальперинские Чтения 2016

Сопоставление Zсейсмограмм отклика от одиночной трещины

> а) БТТ b) AO=1:1000 c) AO=1:100

Сейсмограммы записи Х-компоненты отклика от кластера 11 трещин

а) БТТ b) AO=1:100

Сейсмограммы записи Z-компоненты отклика от кластера 11 трещин

а) БТТ b) AO=1:100

К анализу фазовых переходов у обменной дифрагированной волны на записи горизонтальной компоненты

Сейсмограммы записи Х-компоненты обменной волны для наклонной трещины

- а) в модели БТТ,
- b) AO=1:1000,
- c) AO=1:100,
- d) вертикальной АО=1:100.

На первых трех смены фазы у обменной волны не наблюдается, на последней она присутствует.

Сравнение волновых картин на записях Х-компонент с раскрытостью (аспектным отношением) 1:100 а) с наклонной трещиной и b) вертикальной

Гальперинские Чтения 2016

Предварительные выводы

- Правомерность применения модели БТТ для двух основных типов флюидонасыщенных трещин: макротрещин с преобладающим аспектным отношением соответственно 1:100000 и мезотрещин с АО от 1:10000 до 1:1000.
- Доминирование по интенсивности и совпадение характера обменных дифрагированных волн в моделях БТТ и конечной раскрытости (АО=1:1000 и 1:100) относительно продольных дифрагированных волн на Х- и Z-компонентах.
- Эначительное сходство для кластеров трещин обменных рассеянных (дифрагированных) фронтов для моделей БТТ и конечной раскрытости (АО=1:1000 и 1:100), но только на Хкомпоненте.
- Наличие даже небольшого (α = 5°) отклонения трещин от вертикали определяет отсутствие смены фаз у обменной дифрагированной волны, что резко повышает возможности ее выделения с целью использования как носителя информации о трещинах.

Влияние на характер волнового отклика от трещины доли площади контактов ее стенок ко всей ее шероховатой поверхности

График зависимости амплитуды (А) Х-комп. волны Dps от доли (g) слипшейся поверхности для флюидонасыщенных трещин

g

График зависимости амплитуды (А) Z-комп. волны Dpp от доли (g) слипшейся поверхности для газонасыщенных трещин

g

Выводы

- При умеренных (до 30 %) значениях площади слипания (контактирующих поверхностей) флюидонасыщенных трещин обменная дифрагированная волна на *X*-компоненте ослабляется примерно на такой же процент, как и площадь слипания, и сохраняет способность нести информацию о трещине.
- При слипании газонасыщенных трещин аналогичный умеренный уровень ослабления, соответствующий проценту слипшихся поверхностей трещин, испытывает продольная дифрагированная волна, регистрируемая на Z-компоненте.
- Слипание стенок газонасыщенных трещин может объяснять реально наблюдаемое распространение продольных колебаний в средах с газонасыщенными трещинами, несмотря на условие полного отражения (как от земной поверхности).

Спасибо за внимание

Влияние раскрытости и площади слипания трещин на численное моделирование реальных трещиноватых коллекторов нефтегазовых резервуаров

> Левянт В.Б., Миряха В.А., Муратов М.В., Петров И.Б.

Значения максимальных амплитуд, генерируемых одной трещиной

			Продоль	ная вс	олна	I	Обменная волна					
Тип модели	х-компонента скорости			z-компонента скорости			х-комг скор	z-компонента скорости				
	Ампл.		Смена фазы	Ампл.		Смена фазы	Ампл.	Смена фазы	Ампл.		Смена фазы	
1:100	5	2	да	4		нет	12	нет	4	3	да	
1:1000	3		нет	3	3	да	11	нет	3	3	да	
БТТ	3		нет	3	3	да	11	нет	3	3	да	

Значения максимальных амплитуд, волн генерируемых кластером из 11 трещин

Тип модели	Продольная волна							Обменная волна				
	х-компонента скорости			z-компонента скорости		х-компонента скорости		z-компонента скорости				
	Ампл.		Смена фазы	Ампл.		Смена фазы	Ампл.	Смена фазы	Ампл.		Смена фазы	
БТТ	2	3	2	нет	5	7	да	67	нет	5	5	да
1:100	4	4	2	да	27		нет	70	нет	6	6	да

Зависимость амплитуды Dps отклика от доли слипания при заполнении флюидом

слипание ,%		0	5	10	15	20	25	30
Dps	Vx	144	135	128	123	117	111	109
	Vz	21	16	15	16	18	12	11
Dpp	Vx	31	31	29	28	28	29	28
	Vz	33	27	25	25	24	21	19

Зависимость амплитуд волн Dpp и Dps отклика от доли слипания при заполнении газом

слипание, %		0	5	10	15	20	25	30
Dps	Vx	211	122	57	43	36	33	31
	Vz	11	9	9	9	9	9	9
Dpp	Vx	167	119	92	81	71	69	64
	Vz	381	324	311	285	282	264	248