Исследование возможности

картирования зон трещиноватости в Баженовской свите, используя

обменные рассеянные волны

Левянт В.Б., Квасов И.Е., Муратов М.А., Петров И.Б.

План сообщения

- Обоснование постановки исследований
- Обоснование моделей
- Характер волн отклика при возбуждении плоский фронт (ПФ)
- Характер волн отклика при точечном возбуждении
- Приемы выделения обменной рассеянной волны

Обоснование постановки исследований

- Ранее выполненным численным моделированием установлено, что основную информацию о пластовой зоне субвертикальных насыщенных флюидом мезотрещин несет обменная рассеянная волна (фронт) на записи Х компоненты. Она образована интерференцией дифрагированных волн от мезотрещин приграничных рядов мезотрещиноватого пласта.
- Обменное рассеянное волновое поле по кинематическим признакам соответствует квазиотраженной обменной волне от границы, совмещенной только с кровлей пласта. При этом она имеет переход фазы на пункте возбуждения.
- Обменная рассеянная волна, регистрируемая на горизонтальной компоненте, доминирует по интенсивности, превышая и Х-составляющую рассеянной продольной волны, и обменные отражения от близких границ.

Обоснование постановки исследований (продолжение)

- Выявлено различие структуры поля обменной рассеянной волны на разных флангах приемной расстановки, вызванной влиянием асимметрии обменной дифрагированной волны из-за наклона трещин, а также сменой полярности по разные стороны от точечного источника.
- Обоснована перспективность методики прямого обнаружения зон развития мезотрещин в продуктивных пластах, используя многокомпонентную 3С регистрацию при многократном профилировании.
- Расчетами показана возможность выделения зон мезотрещиноватости в пластах большой мощности до 100м и более по аномалиям обменных рассеянных волн.
- Результаты численного анализа зависимости отклика от мощности трещиноватого пласта подтверждают возможность его полноценного получения от пластов метровой мощности.

Модель среды с трещиноватым пластом большой мощности H =100м

Сейсмограмма X компоненты после ввода кинематики и применения мьютинга

Суммирование каналов левых и правых флангов с коррекцией фазы

Суммирование каналов левых и правых флангов без коррекции фазы

Влияние мощности (толщины) пласта на

Характеристика внутренней структуры баженовской свиты, типовые модели

, Д	Номер пласта	Мощность, м	ρ, кг/м ³	V _p , м/с	Vs м/c	Наличие трещин
	1	1500	2500	3000	1400	нет
ភ	2	1500	2600	3500	1600	нет
ř	3	15	2300	2400	1100	нет
Z	4	5	2700	3800	1700	есть
	5	10	2300	2400	1100	нет
\geq	6	470	2600	3500	1600	нет

v	Номер пласта	Мощность, м	ρ, кг/м ³	V _p , м/с	V _s , м/с	Наличие трещин
Модель	1	1500	2500	3000	1400	нет
	2	1500	2600	3500	1600	нет
	3	10	2300	2400	1100	нет
	4*	1,5/1,0	2700 / 2300	3800 / 2400	1700 /1100	есть/ нет
	4**	1,5 /1,0	2700 / 2300	3800 / 2400	1700 / 1100	Есть,/ нет
	4***	2,0//1,0	2700 / 2300	3800 / 2400	1700 /1100	Есть / нет
	4****	2,0 / 1,0	2700 / 2300	3800 / 2400	1700 / 1100	Есть / нет
	5	10	2300	2400	1100	нет
	6	470	2600	3500	1600	нет

	Номер пласта	Мощность, м	ρ, кг/м ³	V _p , м/с	V _s м/с	Наличие трещин
0	1	1500	2500	3000	1400	нет
-	2	1500	2600	3500	1600	нет
	3	2,0/2,0	2700 / 2300	3800 / 2400	1700 /1100	есть/ нет
5	4	2,0/ 2,0	2700 / 2300	3800 / 2400	1700 /1100	есть/ нет
D	5	2,0 / 2,0	2700 / 2300	3800 / 2400	1700 / 1100	Есть,/ нет
	6	2,0// 2,0	2700 / 2300	3800 / 2400	1700 /1100	Есть / нет
5	7	2,0 / 2,0	2700 / 2300	3800 / 2400	1700 / 1100	Есть / нет
Ξ	8	2,0 / 2,0	2700 / 2300	3800 / 2400	1700 / 1100	Есть / нет
2	9	2,0 / 2,0	2700 / 2300	3800 / 2400	1700 / 1100	Есть / нет
	10	2,0 / 2,0	2700 / 2300	3800 / 2400	1700 / 1100	Есть / нет
	11	468	2600	3500	1600	нет

Модель среды с трещиноватым пластом малой мощности в баженовской свите (модель 1)

Уровень амплитудных аномалий фронтов рассеянных обменных волн

 Структура трещиноватости 3-х типовых моделей Баженовской свиты

Сейсмограммы записи Х компоненты

с кинематическими поправками, обеспечившими спрямление обменной рассеянной волны на времени 2,9 с

с кинематическими поправками и мьютингом

Суммарный временной разрез X компоненты для левых флангов

График амплитуд вдоль фронта обменной рассеянной волны от трещиноватой зоны D_{ps}* (синий) и отражения от Бажена PP_{bg} (красный)

Суммарный временной разрез X компоненты для правых флангов

График амплитуд вдоль фронта обменной рассеянной волны от трещиноватой зоны D_{ps}* (синий) и отражения от Бажена PP_{bg} (красный)

Суммарный временной разрез Х компоненты для обоих флангов со сменой фазы

График амплитуд вдоль фронта обменной рассеянной волны от трещиноватой зоны D_{ps}* (синий) и отражения от Бажена PP_{bg} (красный).

На амплитудных графиках суммарных разрезов флангов и центральной расстановки отмечается существенное увеличение амплитуд в пределах мезотрещиноватой зоны.

Однако уровень амплитуды фона (уровня колебаний вне объекта рассеяния) равен 60-70% от уровня аномалии. Причина, повидимому, в регистрации почти одновременно с D_{ps}* х– составляющей многократного продольного отражения.

Суммарный временной разрез Х компоненты для обоих флангов без смены фазы

-500

500

1000

1500

2000

2500

3000 M

-3000 M -2500

-2000

-1500

-1000

График амплитуд вдоль фронта обменной рассеянной волны от трещиноватой зоны D_{ps}* (синий) и отражения от Бажена PP_{bg} (красный).

Для устранения волны-помехи, а обменных также других продольных волн OT ПЛОСКИХ границ, применено суммирование без смены фаз, что должно привести почти К нулевым амплитудам волныпомехи при сохранении разности обменных рассеянных полей флангов.

Одномерные сигналы фронтов обменной рассеянной волны ${D_{ps}}^*$

Различие времени вступления, формы и интенсивности сигналов рассеянных фронтов разных флангов обусловлена асимметрией, связанной с наклоном трещин и тонкослоистостью свиты, определяющей комплексный характер коэффициента отражения.

Выводы

- Уверенное выделение по амплитудной аномалии обменной рассеянной волны от трещиноватой зоны в баженовской свите определяется двумя факторами:
 - последовательным увеличением процедурами обработки относительной интенсивности обменной рассеянной волны D_{ps}* на X компоненте
 - отличием времени вступления, формы сигнала и интенсивности волновых фронтов D_{ps}* суммарных временных разрезов разных флангов
- Установлена общая перспективность обнаружения в Баженовской свите трещиноватых зон в жестких пластах малой мощности и пачках тонких пропластков при использовании обменных рассеянных волн от них, регистрируемых горизонтальной X компонентой
- В целом исследования численным моделированием выявили принципиальную возможность прямого обнаружения трещиноватых зон в Баженовской свите