Институт физики Земли РАН Институт проблем нефти и газа РАН

Б.М. Шубик (<u>BMShubik@mail.ru</u>)

Анализ сейсмических волновых полей методами эмиссионной и дифракционной томографии

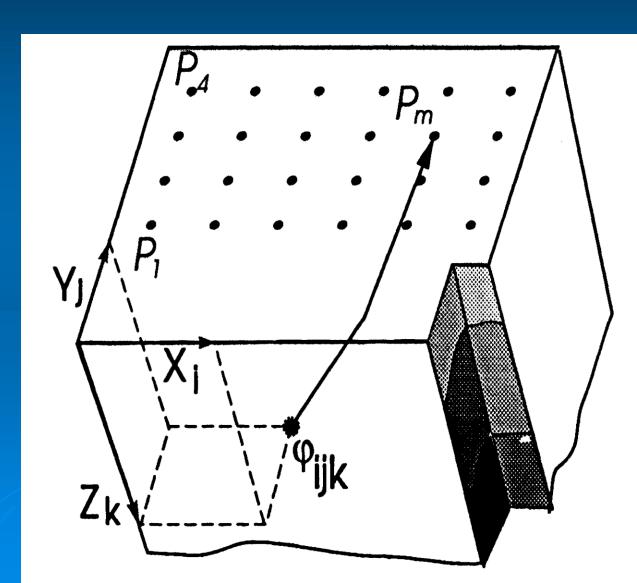
Analysis of seismic wave fields by emission and diffraction tomography methods

- Томография эффективный способ получения данных о внутренней структуре путем анализа сигналов, проходящих через объект. В методах трансмиссионной томографии источники сигналов располагаются вне исследуемого объема, в методах эмиссионной томографии анализируются сигналы от эммитеров или переизлучателей в среде.
- Методы эмиссионной томографии позволяют извлечь информацию о строении и состоянии среды на основе регистрации микросейсм.
 Развитию методов предшествовали исследования сейсмических шумов на поверхности земли, в штольнях и скважинах, у истоков которых стоял Е.И. Гальперин.
- Присутствие в среде эмиссионных источников приводит к появлению когерентных компонент в случайном волновом поле на поверхности.

 Используя данные площадной группы (сейсмической антенны) и оценивая по ним энергию когерентного излучения из внутренних точек среды, можно рассчитать трехмерные карты распределения микросейсмической активности или 3-D "изображение" сейсмически шумящих объектов и контрастных неоднородностей.

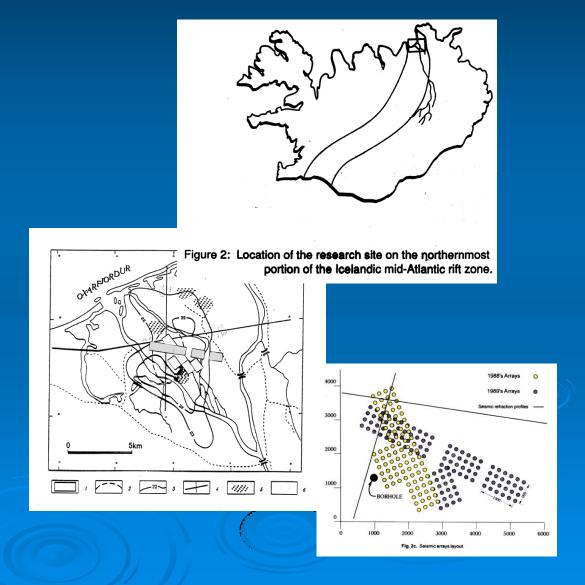
 Для оценки энергии когерентного излучения используется предложенная проф. А.В.
 Николаевым идея сканирования среды лучом сейсмической антенны.

В сообщении кратко освещаются три темы, тесно связанные между собой единым подходом:

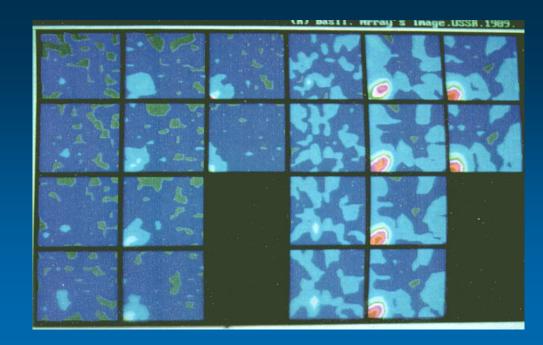

- > Анализ микросейсм
- Автоматическая система сейсмического мониторинга реального времени
- Трехмерная сейсморазведка (3D дифракционная томография с направленным облучением)

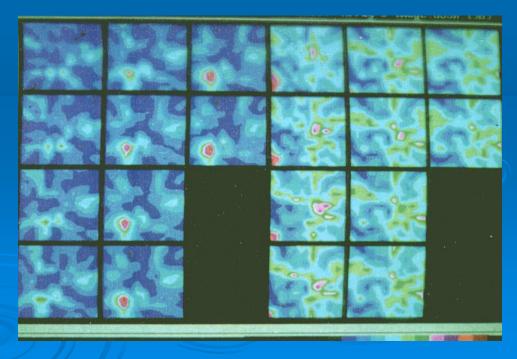
Анализ микросейсм

▶ По инициативе ИФЗ РАН в начале 90х нами были проведены первые успешные исследования по трехмерному картированию гидротермальных зон в северной Исландии на основании анализа микросейсм.


Анализ микросейсм. Принципы эмиссионной томографии

- > $P_1, P_2, ... P_m, ..., P_M$ geophones of seismic array
- by the beam of seismic array P_1 P_M in the units of cubic grid Xi, Yj, Zk
- Data processing is confined to estimation of relative energy of coherent signals irradiated by the grid nodes within the medium (SNR i, j, k).




Эмиссионно-томографические исследования на севере Исландии

- Location of the investigated area, 5 x 6 km within an active hydrothermal zone of the North Iceland
- Mobile seismic arrays were located over a high temperature geothermal field
- Layout of 24- channel seismic arrays of 600 x 1000 m equipped with digital seismic station

Численное моделирование

Пример записи микросейсм

- 24-channel, 40 sec seismogram of microseisms recorded in one of the array positions.
- Distance between geophones is 200 m

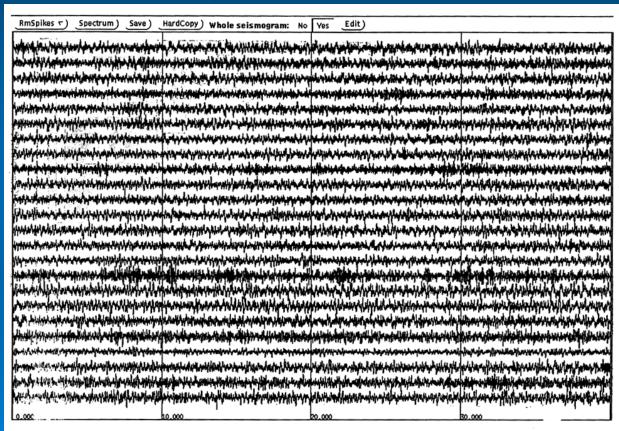


Fig. 9. The example of 40 seconds field seismogram. The picture was carried out on SPARC work sto

Контроль условий регистрации. Фрагмент шумовой сейсмограммы и спектры записей на всех каналах

- Field monitoring of data quality
- 9-th geophone is updown
- Spectrum of 9-th recording shows a level of instrumentation noise

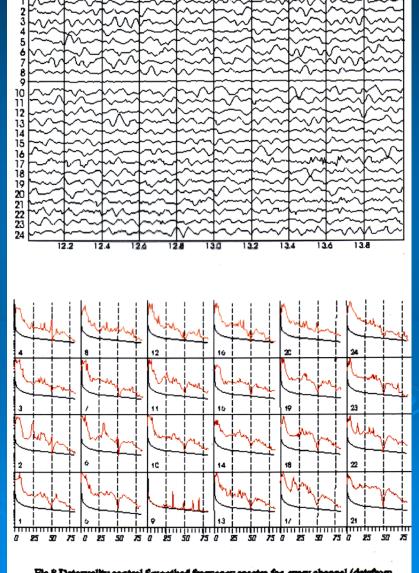
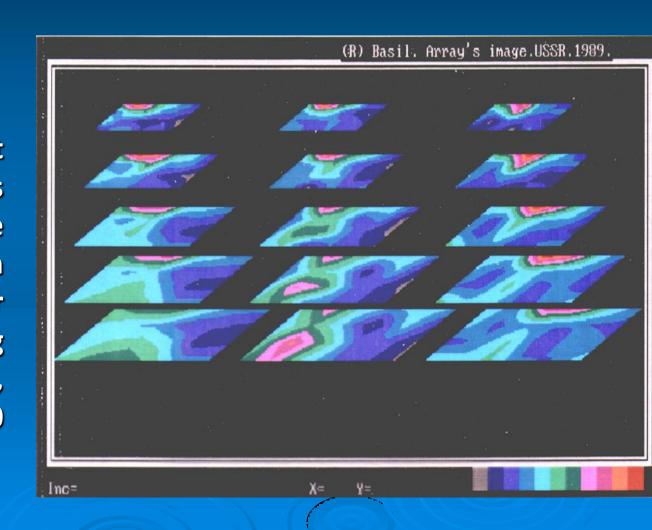
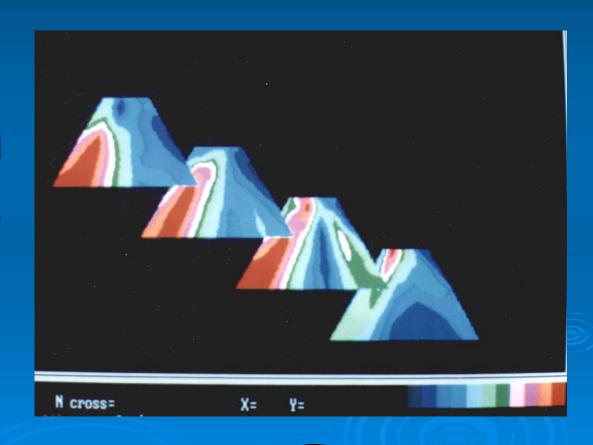
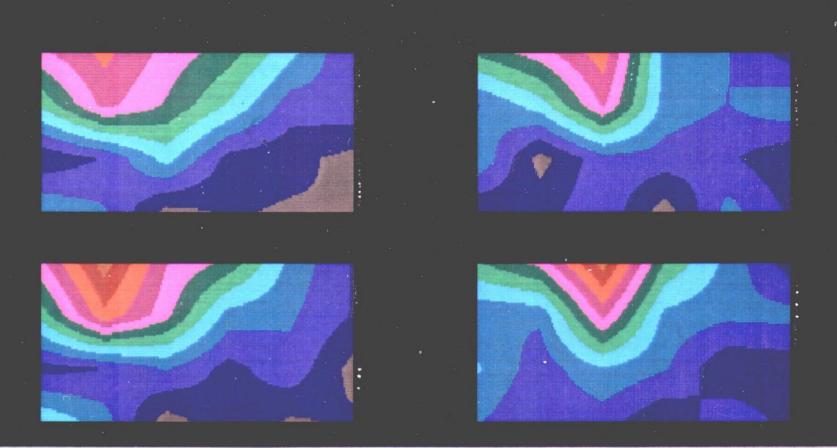



Fig. 8. Detequality control Smoothed frequency spectra for every channel (deterror Fig. 7). The line below spectrum shows noise instrumental level.


Пространственное распределение энергии эндогенных микросейсм стабильно во времени

Processing several seismograms recorded at different times on the same position array (SNR maps for the following depths: 200, 400, 600, 800, 1000 m)

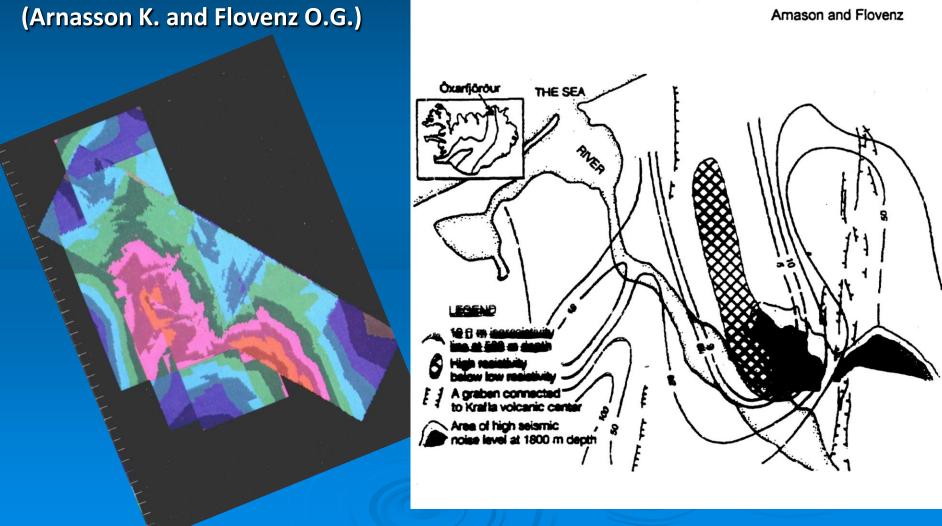

Вертикальные сечения рассчитанной матрицы оценок эмиссионной энергии

- An example of microseismic activity presented as a vertical cross-section of 3-D SNR maps (from single recording)
- Depths are from 200 to 1000 m

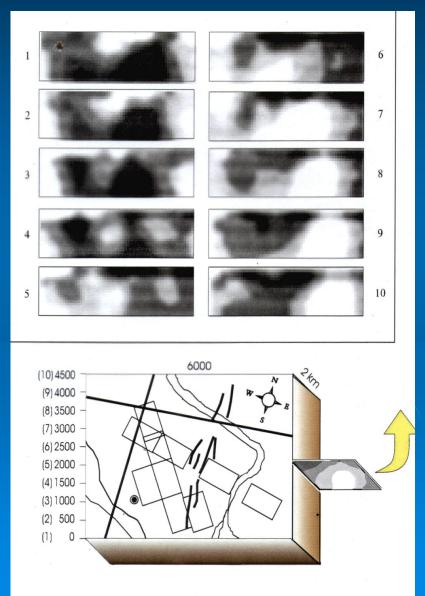
Знаковое 2х-битовое кодирование амплитуд

(R) Basil. Array's image.USSR.1989.

Характер распределени<u>я энергии эндогенных микросейсм (SNR-</u> maps), зарегистрированных в тихое время и в условиях сильных поверхностных помех

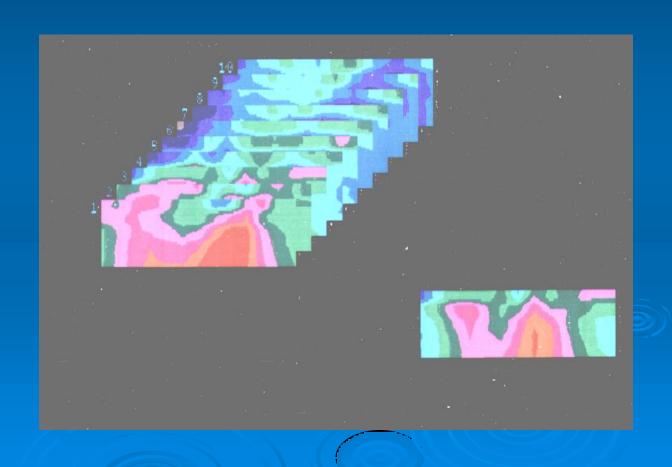

- **Processing of** several seismograms > 200 registered by an seismic array under quiet and noisy ambient conditions (depths from 200 to 1000 m)
 - > 400
- > 600 1st and 3rd columns - quiet conditions (SNR-maps are reestablished)
- 2nd column noisy conditions
- > 800

1000

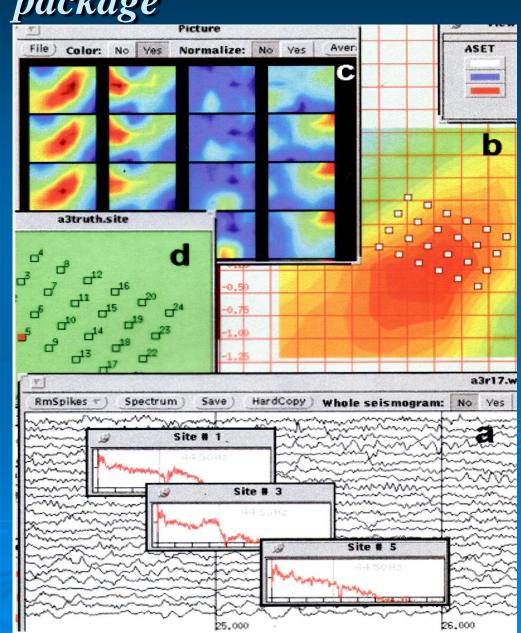

(а) Пример скомпилированной карты сейсмической эмиссии, ассоциированной с гидротермальной активностью, на глубине 1800м. Карта рассчитана по данным 10 сейсмических антенн.

(б) Сопоставление полученных результатов с данными электроразведки

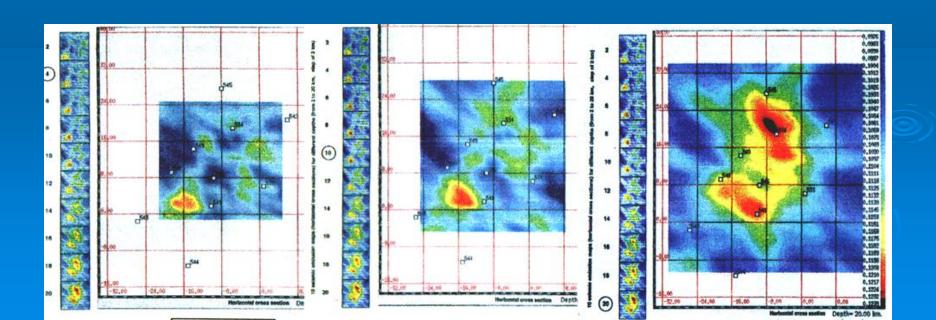
Vertical cross-sections of the entire volume of investigation


- Vertical cross-sections of the entire volume of investigation (6 x 4.5 x 2 km.).
- The distances between vertical cross-sections are 500 m. Dark areas correspond to higher levels of seismic emission

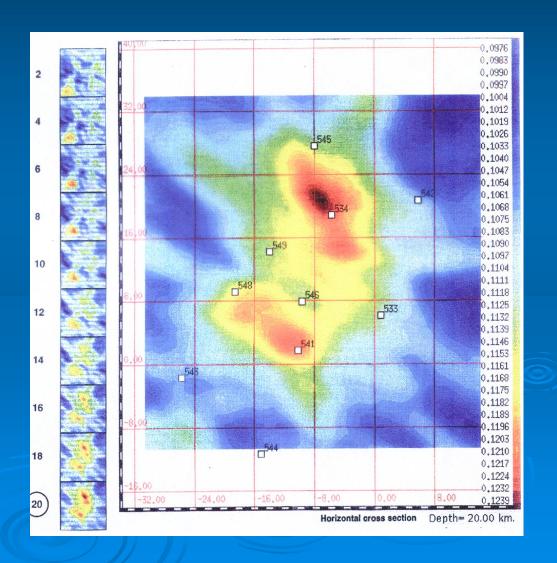
Vertical cross-sections of the entire volume under study


> W-E crossections

> 6 x 4.5 x 2 km


Multi-window ASET SUN-UNIX based software package

- a) Preprocessing window
- b) Image editing window
- c) Main data processing window
- d) Site editing window


Seismic Network Emission Tomography

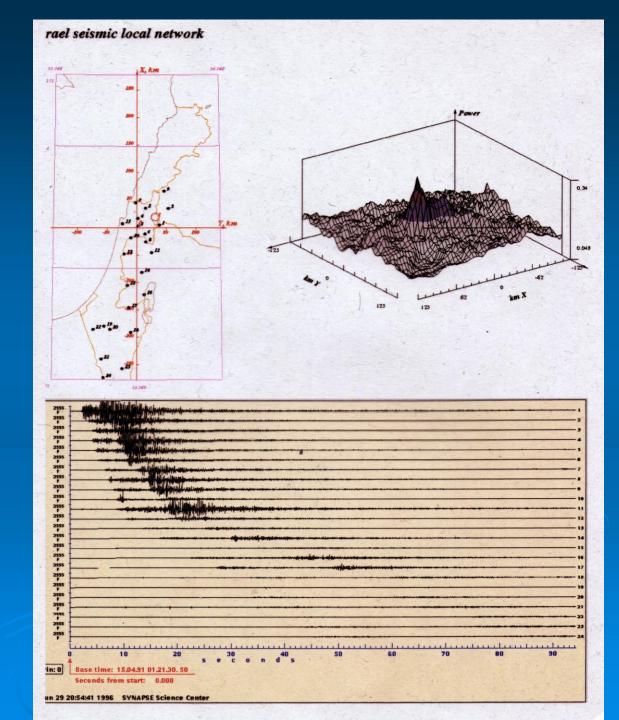
- ➤ Data of the Cusiana Seismic Network in the oil bearing province of Columbia within the seismic active zone. The network consists of 10 seismic stations. (40 x 40 km)
- > 10 horizontal sections at fixed depths beneath the array, spaced 2 km apart (from 2 to 20 km depth). 3 sections are shown here (4, 10, 20 km)

Seismic Network Emission Tomography

- Horizontal section at a depth of 20 km
- Duration of the analyzed seismic recording is 1 hour

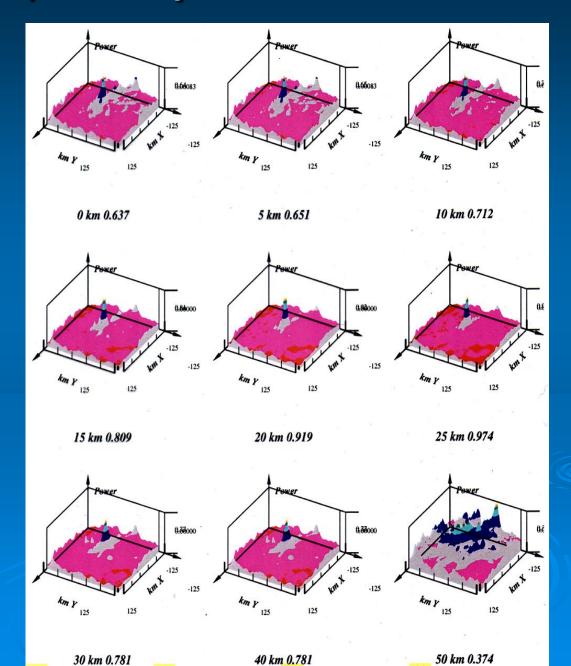

- Впервые было показано, что пространственное распределение энергии эндогенных микросейсм стабильно во времени. Рассчитанная трехмерная модель соответствует активной гидротермальной зоне. Метод может использоваться для решения разведочных задач
- Данное исследование дало толчок интенсивному развитию разнообразных пассивных сейсмических методов, широко применяющихся в настоящее время

Автоматическая система обнаружения и локации сейсмических событий разного масштаба

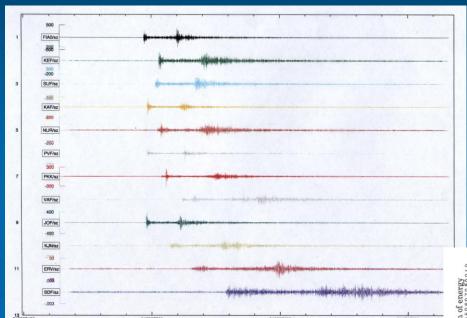

- Традиционные методы локации базируются на достаточно сложной процедуре выделения и точной оценки параметров фаз
- Если событие регистрируется группой или сетью станций, совокупность записей можно анализировать как многоканальную сейсмограмму
- На базе принципов эмиссионной томографии был разработан робастный и быстрый метод обнаружения и локализации реальных сейсмических источников разного масштаба и создана автоматическая система сейсмического мониторинга.

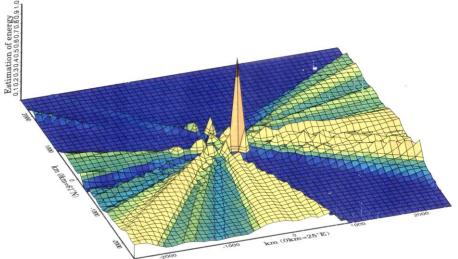
Автоматическая система обнаружения и локации сейсмических событий разного масштаба

- Local earthquake recorded by the Israeli Seismic Network
- Area of scanning is 255 x 255 km, scanning grid spacing 5 km
- Number of seismic stations is 8



- Local earthquake recorded by the Israeli Seismic Network
- Area of scanning is 255 x 255 km, scanning grid spacing 5 km
- Number of seismic stations is 24




Оценка глубины

- SNR maps
 calculated for the
 depths: 0, 5, 10,
 15, 20, 25, 30, 40
 and 50 km
- Values of SNRmap maxima are shown below each SNR-map
- Absolute maximum of SNRmap corresponds to the depth of hypocenter (25 km)

Detection and location of quarry blast recorded by Finland Seismic Network

Автоматическая система обнаружения и локации событий разного масштаба

- Могут использоваться все доступные типы волн (в режиме когерентного или некогерентного анализа)
- Метод обеспечивает возможность
 оперативного анализа и мониторинга
 сейсмичности, связанной с макро и микро
 источниками, в том числе контроля ГРП

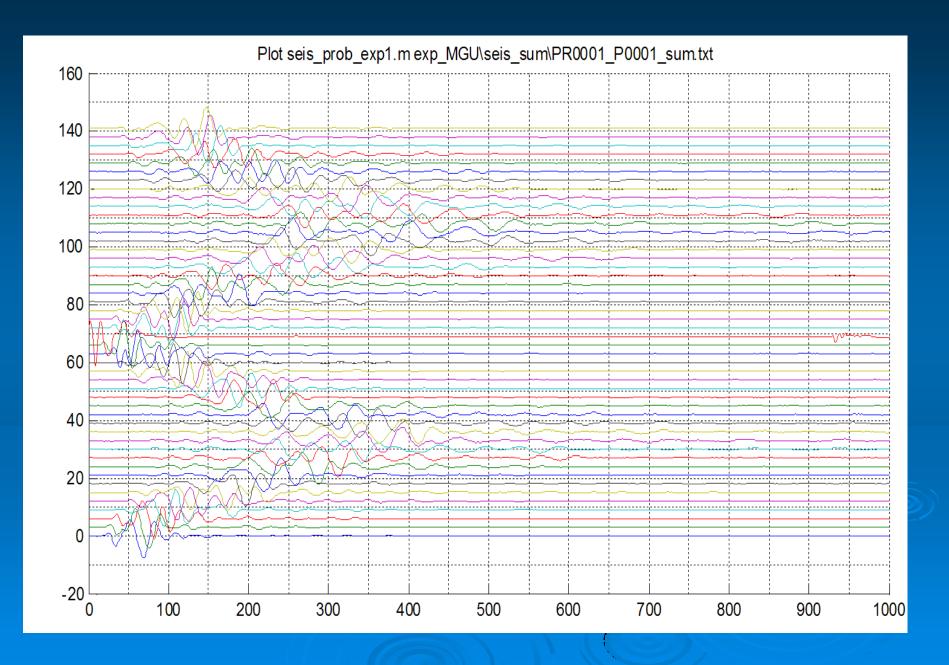
3D дифракционная томография с направленным облучением. От анализа микросейсм к трехмерной сейсморазведке

- Метод ОГТ остается основным и наиболее эффективным способом поиска и разведки структур, к которым приурочены месторождения углеводородов.
- По сути дела, ОГТ представляет собой частный случай пространственной системы возбуждения и приема сейсмических сигналов, которая обеспечивает возможность фокусировки сейсмических волновых полей на внутренних точках среды.
- Принципиальная особенность технологии ОГТ состоит в том, что метод ориентирован в основном на выделение и прослеживание границ и хуже работает в сложных средах с невыдержанными границами, часто представляющими разведочный интерес.

3D дифракционная томография с направленным облучением

- Пассивные методы обеспечивают возможность объемной геолокации достаточно сложных объектов.
- Основные ограничения связаны с низкой разрешающей способностью и надежностью обнаружения структур, отличающихся слабой эмиссионной способностью, т.е. они плохо различают в исследуемой толще «молчащие», неактивные объекты.
- Однако, мы можем использовать сформулированные подходы, если организуем направленную подсветку среды внешними источниками.

- В основе иного подхода лежит идея перехода от корреляции отражений и трассирования отражающих границ к сканированию среды с использованием направленных свойств пространственных систем излучения и приема.
- Суть развиваемого метода 3D дифракционной томографии с направленным облучением сводится к использованию управляемых излучающей и приемной пространственных систем для формирования направленного излучения и приема сейсмической энергии и синхронному сканированию среды этими двумя лучами, в процессе которого появляется возможность построения трехмерного изображения внутренней структуры среды.


3D Diffraction Tomography

Размер·площадки·по·X·--36·м·(4·---40м),·по·Y·--20·м·(-4·--16м)¶ Использовалась·скоростная·колонка:¶

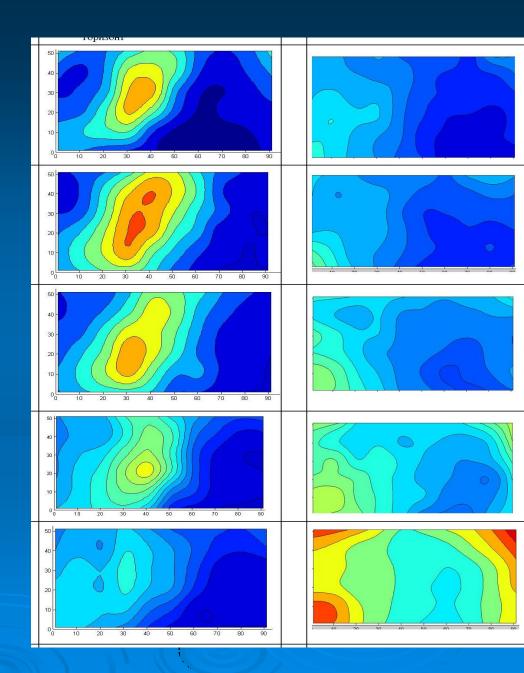

No∙	Отметка-	Мощность.	Скорость-	¤
слоя	кровли∙(м)¤	(M)¤	(M / c)¤	
1¤	0 ∙¤	4.5·¤	1100¤	¤
2 ¤	4.5·¤	2¤	1700¤	¤
3 ¤	6.5¤	1·¤	1500¤	¤
4 ¤	7.5¤	16·¤	1800¤	Ø
5 ¤	23.5¤	100·¤	2000¤	Ø

Схема-расстановки-точек-приема-и-излучения-и-сетки-опроса

<mark>12</mark> ¤	<mark>16</mark> ¤	<mark>20</mark> ¤	<mark>24</mark> ¤	<mark>28</mark> ¤	<mark>32</mark> ¤	<mark>36</mark> ¤	<mark>40</mark> ¤	<mark>44</mark> α	<u>Y/X(м)</u> рз
g g	a i	¤	¤	¤	¤	¤	¤	¤	a)
<mark>*</mark> ¤	<mark>*</mark> ¤	<mark>*</mark> ¤	<mark>*</mark> ¤	<mark>*</mark> ¤	<mark>*</mark> ¤	<mark>*</mark> ¤	<mark>*</mark> ¤	¤	<mark>16</mark> ¤
*21ch/<i>p04</i>¤	*20ch/ <i>p05</i> ¤	*19ch/ <i>p06</i> ¤	<mark>*</mark> 18ch/ <i>p07</i> ¤	*17ch/p08¤	<mark>*</mark> 16ch/ <i>p09</i> ¤	<mark>*</mark> 15ch/ <i>p10</i> ¤	*14ch/ <i>p11</i> ¤	13ch/ <i>p12</i> 0	<mark>12</mark> ¤
° <mark>*04ch/<i>p21</i>¤</mark>	*05ch/ <i>p20</i> ¤	<mark>*</mark> 06ch/ <i>p19</i> ¤	<mark>*</mark> 07ch/ <i>p18</i> ¤	*08ch/ <i>p17</i> 0	<mark>*</mark> 09ch/ <i>p16</i> ¤	<mark>*</mark> 10ch/ <i>p15</i> ¤	<mark>*</mark> 11ch/ <i>p14</i> ¤	12ch/ <i>p13</i> ¤	<mark>8</mark> ¤
≈ <mark>*28ch/<i>p28</i>¤</mark>	*29ch/ <i>p29</i> 0	*30ch/ <i>p30</i> ¤	*31ch/ <i>p31</i> ¤	*32ch/ <i>p32</i> ¤	*33ch/ <i>p33</i> ¤	*34ch/ <i>p34</i> ¤	*35ch/ <i>p35</i> ¤	36ch/ <i>p36</i> 0	<mark>4</mark> ¤ }
*45ch/ <i>p45</i> ¤	*44ch/ <i>p44</i> ¤	*43ch/ <i>p43</i> ¤	<mark>* 42ch/<i>p42</i>¤</mark>	*41ch/ <i>p41</i> ¤	<mark>*</mark> 40ch/ <i>p40</i> ¤	<mark>*39ch/<i>p39</i>¤</mark>	*38ch/ <i>p38</i> ¤	37ch/ <i>p37</i> 0	<mark>()</mark> a
<mark>*</mark> ¤	<mark>*</mark> ¤	<mark>*</mark> ¤	<mark>*</mark> ¤	¤ <mark>*</mark> ¤	<mark>*</mark> ¤	¤ <mark>*</mark>	¤ <mark>*</mark> ¤	¤	<mark>-4</mark> ¤ }
g g	q	¤	¤	¤	¤	¤	¤	¤	a
12 ¤	<mark>16</mark> ¤	<mark>20</mark> ¤	24 ¤	<mark>28</mark> ¤	32 ¤	<mark>36</mark> ¤	<mark>40</mark> ¤	<mark>44</mark> ¤	<u> У/Х(м)</u> рз
	**\text{\text{\text{\$\frac{\partial}								

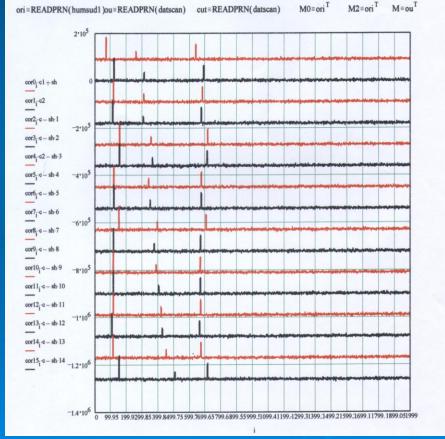
- >Обработка данных, зарегистрированных 48 канальной расстановкой (4 х 12) с использованием ударных излучателей в зоне приема.
- > Результатом обработки являются не временные разрезы, а трехмерное изображение мелкозаглубленного объекта (инженерного туннеля).
- >Показаны горизонтальные сечения рассчитанной 3D матрицы оценок энергии дифрагированных волн (глубины от 4 до 20 м (слева) и от 24 до 40 м (справа) с шагом 4 м).

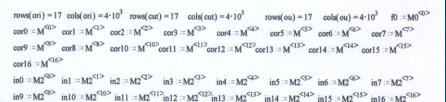
- Метод позволяет повысить разрешающую способность и надежность обнаружения в исследуемой среде неоднородностей за счет двойной фокусировки излучающей и приемной сейсмических антенн на внутренних точках среды, накопления и оптимальной согласованной адаптивной фильтрации принимаемых сигналов.
- Метод может быть использован для дополнительной обработки сложных фрагментов уже имеющихся сейсморазведочных данных ОГТ с целью картирования локальных неоднородностей в зонах нарушения прослеживаемости границ. Для этого комплекс может быть встроен в современные системы обработки сейсморазведочных данных.
- > Дефектоскопы с фазированными решетками

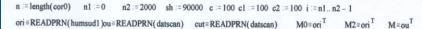
Был получен ряд патентов на данный способ 3D сейсморазведки

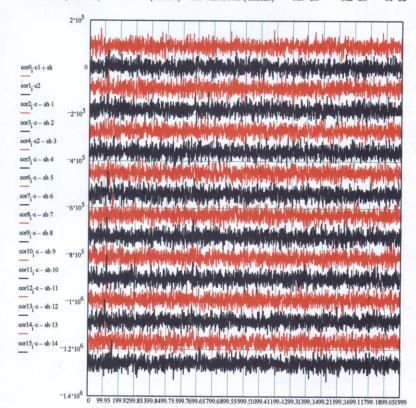
Ультразвуковой дефектоскоп томограф A1550 IntroVisor с излучателями-приемниками в виде площадных антенн - фазированных решеток.

- Дефектоскоп, сканер
 протяженных объектов, или
 томограф для получения набора
 срезов или трехмерных
 изображений внутренних
 неоднородностей. Показаны два
 вида многоэлементных антенн фазированных решеток для
 излучения и приема сигналов.
- Фазированные решетки позволяют фокусировать излучение и прием на внутренних точках.

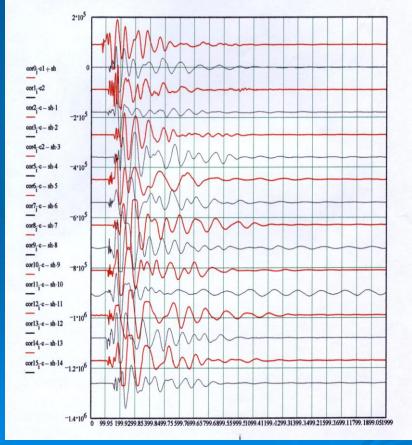


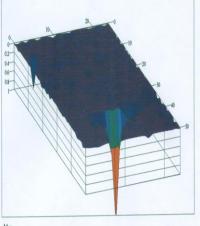

Я хочу выразить благодарность:

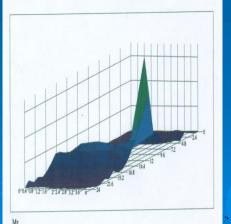

- Проф. А.В. Николаеву за его идею сканирования среды и плодотворные обсуждения
- Сотруднику ИФЗ РАН В.Л. Киселевичу за программное обеспечение регистрации, ввода и визуализации данных, участие в разработке программного пакета ASET и обработке данных
- Сотрудникам ИФЗ РАН А.В. Севальневу, В.С.Лаврову, В.Л. Киселевичу, В.Б. Смирнову за участие в подготовке и проведении полевых работ
- Проф. М.Л. Владову, кфмн А.Н. Ошкину и сотрудникам каф. Сейсмометрии геол ф-та МГУ за помощь в проведении экспериментальных работ по 3D сейсморазведке


Благодарю за внимание

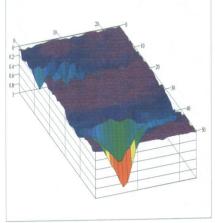
 $\begin{aligned} & \text{rows}(\text{ori}) = 17 & \text{cols}(\text{ori}) = 4 \cdot 10^3 & \text{rows}(\text{cut}) = 17 & \text{cols}(\text{cut}) = 4 \cdot 10^3 & \text{rows}(\text{ou}) = 17 & \text{cols}(\text{ou}) = 4 \cdot 10^3 & \text{f0} := \text{M0}^{50} \\ & \text{cor0} := \text{M}^{50} > & \text{cor1} := \text{M}^{51} > & \text{cor2} := \text{M}^{52} > & \text{cor3} := \text{M}^{53} > & \text{cor4} := \text{M}^{54} > & \text{cor5} := \text{M}^{58} > & \text{cor6} := \text{M}^{58} > & \text{cor7} := \text{M}^{57} > \\ & \text{cor9} := \text{M}^{59} > & \text{cor8} := \text{M}^{58} > & \text{cor10} := \text{M}^{510} > & \text{cor11} := \text{M}^{512} > & \text{cor12} := \text{M}^{512} > & \text{cor13} := \text{M}^{513} > & \text{cor14} := \text{M}^{514} > & \text{cor15} := \text{M}^{515} > \\ & \text{cor16} := \text{M}^{516} > & \text{cor16} := \text{M}^{516} > & \text{cor19} := \text{M}^{512} > & \text{cor19} := \text{$

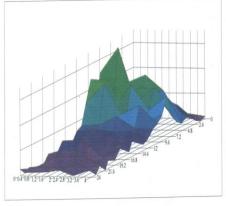


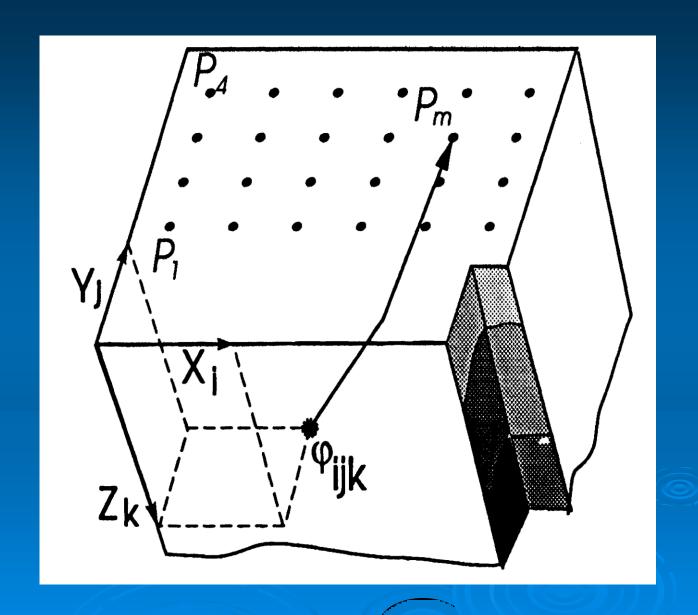

rows(ori) = 17 cols(ori) = $4 \cdot 10^3$ rows(cut) = 17 cols(cut) = $4 \cdot 10^3$ rows(ou) = 17 cols(ou) = $4 \cdot 10^3$ f0 := 10^{4} rows(ori) = 17 cols(ou) = 10^{4} rows(ori) = 1 $cor0 := M^{<0>} cor1 := M^{<1>} cor2 := M^{<2>} cor3 := M^{<3>} cor4 := M^{<4>} cor5 := M^{<5>} cor6 := M^{<6>} cor7 := M^{<7>}$ $cor9 := M^{<9>} cor8 := M^{<8>} cor10 := M^{<10>} cor11 := M^{<11>} cor12 := M^{<12>} cor13 := M^{<13>} cor14 := M^{<14>} cor15 := M^{<15>}$


 $in0 := M2^{<0>} \quad in1 := M2^{<1>} \quad in2 := M2^{<2>} \quad in3 := M2^{<3>} \quad in4 := M2^{<4>} \quad in5 := M2^{<5>} \quad in6 := M2^{<6>} \quad in7 := M2^{<7>}$ $in9 := M2^{<9>} \quad in10 := M2^{<10>} \quad in11 := M2^{<11>} \\ in12 := M2^{<12>} \\ in13 := M2^{<13>} \quad in14 := M2^{<14>} \\ \quad in15 := M2^{<15>} \quad in16 := M2^{<16>} \\ \quad in16 := M2^{<16} \\ \quad$ n := length(cor0) n1 := 0 n2 := 2000 sh := 90000 c := 10 c1 := 10 c2 := 10 i := n1... n2 - 1

 $ori = READPRN(humsu9) \ ou = READPRN(datscan) \quad cut = READPRN(datscan) \quad M0 = ori^T \quad M2 = ori^T \quad M = ori^T$




iyb = iztek nyu iye = iyb + nyu - 1 ixb = 0 ixe = nxu - 1 Mz = submatrix(M, iyb, iye, ixb, ixe) $iz := 0, 1...nzu - 1 \ \ iy := 0, 1...nyu - 1 \qquad ix := 0, 1...nxu - 1 \quad sm = READPRN(smap) \qquad k1 := 1.5 \qquad k2 := 0.7 \\$ $M_{N_{y_i,k}} := \left(M^{\leq nnk >}\right)_{iy+iz\cdot nyu} \qquad nzu = 51 \qquad iztek = 36 \qquad ixtek = 0 \qquad Mxx := Mx^T \cdot k1 \qquad Mz := Mz \cdot k2$



M = sm rows(sm) = 1.275·1(cols(sm) = 5 ryu = $\frac{rows(sm)}{nzu}$ rxu = cols(sm) ryu = 25 rxu = 5 ivb = iztek nyu ive = ivb + nyu - 1 ixb = 0 ixe = nxu - 1 Mz = submatrix(M, iyb, iye, ixb, ixe) iz = 0,1...nzu - 1 iy = 0,1...nyu - 1 ix = 0,1...nxu - 1 $M_{N_{\eta,\vec{u}}} := \left(M^{\text{Sottek}>}\right)_{\hat{\eta} + iz \cdot \sigma \gamma u}$ nzu = 51 iztek = 10 ixtek = 0 $Mxx := Mx^{T}$

