Seispion

Москва, ОАО «ЦГЭ» июль 2014 г.

http:/www.cge.ru E-mail: cge@cge.ru Tel: (499) 192 6415 Fax: (499) 192 8088 Нейросетевое моделирование и кластерный анализ сейсмических и скважинных данных

<u> Программный комплекс – Seispron</u>

• Основная задача

Основной задачей при создании программы "SeisProN" была проверка возможностей и использование инновационных технологий нейронных сетей для обработки и интерпретации геофизических данных. В рамках программы была решена актуальная задача прогнозирования свойств резервуаров по сейсмическим и скважинным данным на основе сейсмического атрибутного анализа.

• Научно-практическое применение

- Программа "SeisProN" является нашей уникальной разработкой. Технологии и методики, используемые в программе, создаются с 2004 года. В программе используются специально модифицированные алгоритмы регрессионного анализа, нейронных сетей и устойчивой кластеризации сейсмических данных.
- Все исследования и разработки успешно применяются в производственном режиме с помощью программы "SeisProN".

Назначение программы

 Программа предназначена для расчета (прогнозирования) геолого-геофизических величин (коллекторских свойств – пористости, эффективной мощности пласта, кривых ГИС и т.д.) на основе линейных и нелинейных моделей. Расчет осуществляется для набора сейсмических атрибутов, взятых во временном окне вдоль выделенного горизонта и значениям прогнозируемых величин, известных в точках пересечения скважин и горизонта.

Нейросетевое моделирование, регрессионный и кластерный анализ сейсмических и скважинных данных

Программный комплекс – Модель входных данных

Программный комплекс – Модель выходных данных

Исходные данные –Скважины (загрузка)

Набор значений расчетного параметра в скважинах легко подготавливается вручную или с помощью программы Microsoft Excel.

🛛 Neural Networks Seismic Attributes Prognosis Version 2.3.1 20140524																		
SeisProN Bb	SeisProN Выборка Сейсиические атрибуты Статистические атрибуты Вычисления Журнал										Neural	Networ	ks Seismic A	Attributes Progn	osis Version	2.3.1 20140524		
	Скважина	In	Cr	Параметр	MLR	GRNN	MLP	№ Кластера	Центр	-	ſ	CalaDuaM	Выбори	a cažannu		C		Denne
1	41	1136.4081	1461.8816	39.9	35.5129	31.8042	31.7347	4			III	SeisProiv	рыоорк	Сеисмиче	еские атриоуты	Статистичес	ские атрибуты	выч
2	45	1100.9742	1458.3645	27.4	30.5531	31.211	28.0992	4	*									
4	48	1211.0004	1074.509	46	37,5615	33,9947	38,6863	4					- (кважина	In	Cr	Параметр	
5	49	1103.9644	1326.7419	25.2	32.9256	33.3937	26.2965	4	*									
6	50	1154.3054	1766.1431	15.8	17.1564	29.4659	14.6021	10				1	41		1136.4081	1461.8816	39.9	
7	61	1162.1821	1563.2529	36.4	30.877	29.7689	32.3219	10				-	10		4400.0740	4450.0445	07.4	
9	62	1152.3546	1636.1024	38	32.3291	30.0256	37.5981	10				Z	45		1100.9742	1458,3645	27.4	
10	64	1108.1793	1274.8442	33.2	36.4267	32.8697	30.0612	9	*			3	46		1211.8884	1286.0605	6.8	
11	66	1195.2261	1553.8783	31	25.742	31.8617	31.1844	4										
12	67	1170.9109	1387.5131	27.7	20.727	29.184	24.9683	10				4	48		1120,3915	1074.509	46	
13 14	68 70	1117.3495 1185.1654	1507.3369 1687.319	28.8 20	37.4452 26.2862	32.3793 27.5852	29.8652 20.5438	9 10	*			5	49		1103.9644	1326.7419	25.2	
15	71	1146.9287	1219.4547	32.4	32.5342	31.0791	32.1162	10				6	50		1154.3054	1766.1431	15.8	
17												7	61		1162.1821	1563.2529	36.4	
19												8	62		1152.3546	1636.1024	38	
20												9	63		1106.4425	1187.2863	32.8	
22 23												10	64		1108.1793	1274.8442	33.2	
24 25												11	66		1195.2261	1553,8783	31	
26 27												12	67		1170.9109	1387.5131	27.7	
УГ	" РАВЛЕНИЕ СКВА)	і КИННЫМИ ДАН	ными							4		13	68		1117.3495	1507.3369	28.8	
Загрузить в	з таблицу 🗌 Очис	тить таблицу	Матрица ко	pp.														—
C1	АТИСТИКА											14	/0		1185.1654	1687.319	20	
		Пар	аметр	MLR	GRN	N	MLP					45	7.1	1.5	1146.0007	1010 4547	22.4	
	Cpe,	днее 29.4267		29.4267	29.869	28.0	138											
Ста	ндартное отклон	ение 9.839		8.0763	5.273	8.21	47											
			-									•	Окн	о загрузк	и данных ГІ	IC		
Коз	Козффициент корреляции			0.8208	0.7295	0.95	79											
Средне	квадратичная ош	ибка	:	29.4743	45.8533	10.8	146											
Ошибка/трен	ировочное множе	ство		26.8939	44.7074	27.0	084											
Ошибка/тестовое множество				257.0428	93.2247	121.3	2721											

• Рабочее окно программы загрузки скважин

Выборка параметра по скважинам (файл с обучающей выборкой имеет расширение *.csv и содержит информацию в столбцах в следующем порядке: положение скважин в координатах Inline – Crossline, "истинное" значение прогнозируемого параметра в точках скважин)

Исходные данные –Сейсмические атрибуты (загрузка)

Программа предназначена для расчета прогнозных геофизических параметров на основе рассчитанных вдоль горизонта сейсмических атрибутов и обучающей выборки – набору скважин, в которых известны значения прогнозируемого параметра.

🖬 Neural Networks Seismic Attributes Prognosis Version 2.3.1 20140524											
SeisProN Выборка Сейс	мические атрибуты Статистические атр	рибуты Вычис	ления Журнал								
	Path		Min	Мах	Avg	Dev	ValbyMLR Va	byMLP			
D:\Project_Maxova\KOROW	4-max\seis-Max\atr\Seispron\P1as\Hef\P1Rif	C3b_I01.parm	-1175.201172	1175.201294	-607.30	2315 716.554620	0 -14.246013 0	.000000			
D:\Project_Maxova\KOROV				_							
D:\Project_Maxova\KOROV	Neural Networks	Seismic	Attribute	es Progr	iosis	Version 0.	9.5 2007	1004			
D:\Project_Maxova\KOROV	Colonau contra constituire		(<u>-</u>								
	сеисмические атриоуть	TNC	вычисле	ния							
	Path	1		Min	1	Мах	Avg	Dev			
	G:\PROJECT\ Prognosis\P	, attribute	e (8).parm	-733.85	8276	711.842468	-7.068863	166.65575	в		
	G:\PROJECT_Prognosis\P	_attribute	e (2).parm	-128.53	5431	113.984253	-0.556157	21.72255	D		
	G:\PROJECT_Prognosis\F	_attribute	e (4).parm	-104.00	0000	118.000000	-0.071444	31.28063	5		
			0.000000	0.000000	o.J.				n'		
			0.000000	0.000000	0.00	0.0000 0.00000	0.000000 0	1.000000			
			0.000000	0.000000	0.00			.000000			
			0.000000	0.000000	0.00		0.000000 0	1.000000			
			0.000000	0.000000	0.00	0.00000	0.000000 0	0.000000			
			0.000000	0.000000	0.00	0.0000	0.000000 0	.000000			
			0.000000	0.000000	0.00	0.00000	0.000000 0).000000			
			0.000000	0.000000	0.00	0.00000	0.000000 0	1.000000			
			0.000000	0.000000	0.00			.000000			
			0.000000	0.000000	0.00			1.000000			
			0.000000	0.000000	0.00	0.00000	0.000000 0).000000			
			0.000000	0.000000	0.00	0.0000	0.000000 0	.000000			
Загрузить атрибуты	Очистить таблицу Показать выбранны	ій атрибут 🛛 И:	зменить парамет	ры							
Дополнительн	0										
Новое значение Dflt	Сохранить атрибут Показать 3D кросс-	плот									
Включить координаты в список атрибутов											
Гонистрина Параметры за Првед Госо	TPYWEHHIJX AAHHIJX		Dflt 100000								
1100g 960	1320 un 1.0		-100000.	U							
CrBeg 800	CrEnd 2600 dCr 1.0]								

Для устранения различий во влиянии данных на результат производится их автоматическая статистическая стандартизация, то есть, приведение к нулевому среднему и единичной дисперсии.

На Рис.1 представлена схема получения исходных данных для задачи восстановления фильтрационноёмкостных свойств. Окно усреднения высотой

Нw расположено со смещением *Ow* относительно линии сейсмического горизонта. Значения сейсмических атрибутов *A*₁,*A*₂,...,*A*_n усредняются вдоль окна и им ставится в соответствие усредненное значение фильтрационно-ёмкостного свойства *F*¹

Рабочее окно программы загрузки атрибутов

• Схема стандартизации атрибутов

Карты сейсмических атрибутов (загружаемые карты сейсмических атрибутов рассчитывается предварительно. Возможна загрузка карт в виде файлов в формате *.cps или в формате *.parm (внутренний формат комплекса DV-Discovery)).

Программный комплекс – Вычисления

Neural Networks Seismic Attributes Prognosis Version 2.3.1 20140524		×								
SeisProN Выборка Сейсмические атрибуты Статистические атрибуты Вычисления Журнал					J					
Множественная линейная регрессия <u>Сеть обобщенной регрессии</u> Сеть перцептрон Кластеризация		• N	• іметод множественной ли							
обучить Показать уравнение регрессии a2 = D:\Project_Maxova\KOROVA-max\sets-1 a3 = D:\Project_Maxova\KOROVA-max\sets-1 a4 = D:\Project_Maxova\KOROVA-max\sets-1 a5 = D:\Project_Maxova\KOROVA-max\sets-1	lax atr Seispron P1as Hef P1R lax atr Seispron P1as Hef P1R lax atr Seispron P1as Hef P1R lax atr Seispron P1as Hef P1R	p	егресси	и (MLR)						
< m	,	• H	ейронн	ая сеть об	общенн					
выполнить анализ		_ p	егресси	и (GRINN)						
Анализ критериев значимости модели регрессии Козффициент детерминации 0.6738										
Стандартная ошибка остатков 7,0088 показать график		• N	ногосл	ойный пин	ейный					
Критерий Фишера:										
Факторное значение критерия 3,7179 F-критическое 3,4817 P 0	95 вычислить	1)	MLP)							
Критерий Стьюдента:										
Значимость коэффициентов Доверительные интервалы С-критическое 1.0997 р 0	.7 вычислить									
t5= 0.5422 a5 = ▲ b2: [-28.7, 58.23 ▲ b3: [-19.83, 66.17 Meaningful Attributes (t-c b4: [-94.14, -24.9]	🔲 Neural Networks Seismic Attr	ibutes Prognosi	Version 0.	9.5 20071004						
t4=-1.8939 a4 = E b5: [-10.14, 29.88 E	Сейсмические атрибуты ГИС Выч	нисления								
< III > Ключение данных	Множественная линейная регрессия	Сеть обобщенной	регрессии С	еть перцептрон	(ластеризация					
перезагрузить атрибуты перезагрузить скважины			- 1		•					
исходные атрибуты исходные скважины										
работа с картой	СТАТИСТИКА	_								
вычислить карту показать карту сохранить карту		Параметр	MLR	GRNN	1					
контроль	Среднее									
показать кросс-плот										
выполнить кросс-проверку Количество исключаемых скважин 1	Стандартное отклонение									
	Коэффициент корреляции									
	Среднеквадратичная ошибка									
- табочее окно программы вычислении	Ошибка/тренировочное множество									

Расчет может выполняться несколькими способами

- сственной линейной MLR)
- сеть обобщенной **GRNN**)
- ный линейный персептрон

_ 🗆 🗙

MLP

В каждом из выбранных положений можно выполнить визуальный анализ карт прогнозного параметра и сохранить полученные карты В этом же положении выполняется процедура перекрестной проверки (поле "контроль").

Ошибка/тестовое множество

Программный комплекс – Вычисления

Прогнозные карты Нэф* и кросс-плоты Нэф*

Скважинные данные

Гкважина	In	Cr.	Параметр
скважина			napanerp
w1	391.16	927.88	27.4
w2	779.8	1407.51	28.2
w3	177.66	470.54	20.2
w4	247.29	640.76	15.4
w5	412	637	13.4
w6	650.87	843.31	16.38
w7	425.77	320.77	17.2
w8	710.08	1390.41	36.42
w9	413	492.21	22.38
w10	373.44	851.98	24.4
	1		

Ккор = 0.85

Нэф, м

Прогнозирование по методу множественной регрессии (MLR)

• Кросс-плот значений в скважинах и прогнозных

- Прогнозная карта по сети MLR
- Простое линейное представление зависимости прогнозного параметра от исходных сейсмических атрибутов
- Поиск параметров зависимости производится стандартными методами при помощи минимизации среднеквадратичного отклонения
- Линейная модель является неадекватной, если решаемая задача носит нелинейный характер
- Значения, получаемые по линейным уравнениям регрессии, могут приводить к нефизическим величинам

Прогнозирование по методу множественной регрессии (MLR)

Mł	МНОЖЕСТВЕННАЯ ЛИНЕЙНАЯ РЕГРЕССИЯ (MLR) —						МНОЖЕСТВЕННАЯ ЛИНЕИНАЯ РЕГРЕССИЯ (MLR)							
уравнение	регрессии													
обучить		оказать уравн	ение регресси	ии		Обучить			жазать '	уравне	ние рег	рессии		
							Ymlr = 22.3	03131347 - 0.00	3727761	13327 '	* a1 + 0	.081 🔼		
							Ymlr(std) =	22.2753376693	- 0.6212	528581	54 * a1	+ 1.		
							at = CÚPR(ic' progod	scie 1 \ D	attribut	e (8)		
								DECT (_Prognos	istprogric	/SIST (F_	attribut	е (о, 🔽		
выполнить анализ							<	1111				>		
Анализ критериев значимости м	юдели регрессии —													
Коэффициент детерминации	0.6738													
Стандартная ошибка остатков	7.0088	nor	казать график											
Критерий Фишера:							Figure 2					_ D X		
Факторное значение критерия	3.7179		F-критическое	3.4817 P	0.95	вычислить		Desid						
Критерий Стьюдента:							10	Resid		ignosis		48		
Значимость коэффициентов	Доверительные ин	нтервалы	t-критическое	1.0997 P	0.7	вычислить			67 •	65	61 62	•		
t5= 0.5422 a5 = 🔺	b2: [-28.7,	58.23 🔺					5			•	• •	. 41		
Meaningful Attributes (t-c	b4: [-19.83	, 68.17												
t4= -1.8939 a4 =	b5: [-10.14	, 29.85 =					i nak				71			
▼	•						Resid	50			45	6		
Ислючение данных								40			•	• 04		
перезагрузить атрибуты	перезагрузить	скважины					-5			70				
исходные атрибуты	исходные ски	важины								•	49	68		
							-10	10 15	20 2		0 3	•		
<i>6</i> ×							5	10 15 Pro	gnosis Paran	neter 3	iu 5:	5 40		
работа с картои							100 +	of 🖶 🗐						
контроль		покарту										đ		
показать кросс-плот														
	16													
выполнить кросс-проверку	количество искл	ючаемых скважи	н 1											

<u> Нейронные сети - структура</u>

Структура нейрона

- Искусственный нейрон имеет несколько входов и один выход
- Сигналы на входе умножаются на веса связей, суммируются и пропускаются через нелинейную функцию для получения выхода нейрона

Нейронная сеть

Сеть состоит из нескольких слоев нейронов, соединенных специальными связями. Веса настраиваются при обучении сети. Сейсмические атрибуты, подаются на вход сети для формирования прогноза.

Обучение нейронной сети

- Обучение заключается в изменении значений весовых коэффициентов
- Обычно данные разделяются на две выборки обучающую и тестовую
- Используются различные алгоритмы обучения, основанные на оптимизации нелинейной целевой функции

На этапе обучения сети представляются обучающая выборка (прогнозного параметра по усреднению в скважине) и значения сейсмических атрибутов в точках, соответствующих пересечению выбранного горизонта и скважин

На этапе применения обученная нейронная сеть используется как расчетный механизм, калькулятор, который рассчитывает по входным сейсмическим атрибутам выход сети – прогнозный параметр, соответствующий выученной сетью нелинейной зависимостью

<u>Прогнозирование с помощью нейронной сети</u> обобщенной регрессии (GRNN)

Прогнозная карта по сети GRNN

Нейронная сеть обобщенной регрессии (GRNN), используемая в данной версии программы, обучается за один шаг и не требует проведения дополнительных шагов, кроме задания значения параметра **SPREAD**, управляющего параметра, определяющего качество работы нейронной сети GRNN (гладкость аппроксимации)

Значение параметра SPREAD можно задать вручную или определить автоматически.

<u>Прогнозирование с помощью нейронной сети</u> обобщенной регрессии (GRNN)

 спарамет	-НЕЙРОННАЯ СЕТЬ ОБОБЩЕННОЙ РЕГРЕСИИ (GRNN) —
SPREAD	0.69
	вычислить SPREAD

Кнопка "вычислить SPREAD" – автоматическое определение значения параметра SPREAD. После завершения процедуры определения величины SPREAD будет выведен график ошибок тренировочного и тестового множества, значение параметра занесется в поле "SPREAD" (рис.

Значение параметра SPREAD можно задать вручную. На первом шаге выбирается SPREAD = 1. Значение параметра SPREAD надо подбирать в зависимости от значений ошибки по методу перекрестной проверки.

<u>линейный перцептрон (MLP)</u>

• Прогнозная карта по сети MLP

Существуют два варианта выбора структуры MLP: самостоятельно задать количество нейронов в скрытых слоях или автоматический выбор.

Необходимо задать количество нейронов в скрытых слоях нейронной сети. Это можно сделать в соответствующих полях для ввода:

- "число нейронов на 1-ом слое"- количество нейронов в первом скрытом слое;
- "число нейронов на 2-ом слое"- количество нейронов во втором скрытом слое;
- "число нейронов на 3-ем слое"- количество нейронов в третьем скрытом слое;

Оценка результатов расчета

показать	кросс-плот								
выполнить к	кросс-проверку	ых скважин		Результаты вы	полнения кросс-пј	ооверки			
		УПРАВЛЕНИЕ СКВАЖИННЫМИ ДАННЫМИ							
•	Опции	Загрузить в таблицу Очистить	таблицу Матр	ица корр.					
]	выполнения кросс-проверки	СТАТИСТИКА							
	apoee apobepan		Параметр	MLR	GRNN	MLP			
		Среднее	29.4267	29.4267	30.1596	29.9865			
		Стандартное отклонение	9.839	8.0763	2.9217	7.9607			
		Коэффициент корреляции		0.8208	0.7245	0.8639			
		Среднеквадратичная ошибка		29.4743	59.9818	23.498			
		Эшибка/тренировочное множество		26.8939	58.6933	99.8962			
		Ошибка/тестовое множество		257.0428	91.8074	197.0549			

Статистический анализ связей между сейсмическими атрибутами

Статистические атрибуты

• <u>Поле "Метод главных</u> компонент Пользуясь данным графиком можно сделать вывод о том, какое число атрибутов следует выбрать: чило атрибутов, при котором не наблюдается плавного замедления. Данный график носит рекомендательный характер.

• Поле факторный анализ

• Кросс-плот

• Карта прогноза Нэф*и её зависимость от прогнозного параметра

• Карта верхней границы доверительного интервала Нэф* для уровня значимости 0.05

- Три исходных атрибута
- а1 первая производная;
- а2 мгновенная униполярная фаза;
- а3 градиент.

Устойчивая форма кластеризации (как с заранее заданным, так и с автоматическим определением числа кластеров) для поиска геологогеофизических формаций, отражающих сходство в многомерном пространстве заданного набора сейсмических атрибутов 13 12

11

10

9

8

7

5

3

1. Кубы прогнозных параметров

2. <u>Расчет карт сейсмических фаций</u> по форме сигнала

3. <u>Расчет кубов кластеризации с</u> использованием сейсмических атрибутов

1. Кубы прогнозных параметров

2. Расчет карт сейсмических фаций по форме сигнала

<u>3. Расчет кубов кластеризации с использованием сейсмических атрибутов</u>

Кластеризация по полному кубу

Кластеризация по подкубу

385

• Интеграция программы Seispron

Минимальные технические требования

Для удобства интеграции в сейсмические обрабатывающие комплексы технология позволяет получать карты и выборку, а также возвращать полученный результат в наиболее популярных форматах данных (.parm, .csv, .cps)

Спасибо за внимание

Seispron

Нейросетевое моделирование и кластерный анализ сейсмических и скважинных данных

Контактное лицо: Логинов Дмитрий Викторович

тел.: +7(499)192-8142

E-mail: loginovdv@gmail.com

123298, г. Москва, ул. Народного Ополчения, д. 38, корп. 3

Москва, ОАО «ЦГЭ» июль 2014 г.

http:/www.cge.ru E-mail: <u>cge@cge.ru</u> Tel: (499) 192 6415 Fax: (499) 192 8088

