Энигри И.А.Кушмар, В.И. Митасов, Дмитриев М.В., Алексеев С.Г., Штокаленко М.Б., Ронин А.Л.

Прогнозирование нефтегазоперспективных коллекторов на основе комплексирования детального петрофизического моделирования, данных сейсмо- и электроразведки

29 октября 2014

Санкт-Петербург-Ленинград, 2014г.

Аннотация

- Залежи УВ как в карбонатных, так и терригенных отложениях часто приурочены к ловушкам неантиклинального типа. Развитие коллекторов в карбонатных породах обусловлено вторичными процессами: выщелачиванием, растворением и т.д., в терригенных увеличением песчанистости в глинистой матрице. В первом случае это приводит к разуплотнению пород и, как следствие, уменьшению в них скорости распространения упругих колебаний, уменьшению акустической жесткости и коэффициентов отражения. Во втором наоборот, к увеличению плотности и, соответственно, увеличению скорости, акустической жесткости и коэффициентов отражения нефти или газа приводит к увеличению их сопротивлений на фоне водонасыщенных пород.
- Все эти изменения отображаются в сейсмическом волновом поле, что является физической основой и благоприятной предпосылкой для прогноза развития коллекторов по характеру изменения атрибутов сейсмического сигнала. Установив коррелятивы между атрибутами (главным образом кинематическими) сейсмического сигнала можно прогнозировать возможный характер развития нефтегазоперпективных объектов
- Для этих целей необходимо иметь детальное представление о петрофизических параметрах горной породы (пористости, минеральном составе, характере насыщенности коллекторов), которые могут быть получены на базе петрофизического моделирования, представляющего собой по существу углубленную интегрированную комплексную интерпретацию данных ГИС, керна, испытаний.

• Электро-емкостная модель водо- и нефтенасыщенных пород

Условные обозначения

- Зоны развития коллекторов и неколлекторов:
- I развитие уплотненных породнеколлекторов с высокими значениями УЭС;
- II развитие разуплотненных породколлекторов, насыщенных водой с низкими УЭС и нефтью (газом) с высоким УЭС целевой объект исследований наземными методами электроразведки.
- Области насыщенности:

•

•

- 1 подвижной водой чаще всего уверенно выделяются как коллектор по данным наземной электроразведки;
- 2 подвижными водой и нефтью по данным наземной электроразведки могут быть выделены как низкоомный коллектор или как высокоомный неколлектор;
- 3 подвижной нефтью или газом (целевой объект исследований наземными методами электроразведки), часто относятся к высокоомным низкопористым породамнеколлекторам.
- Индикационные точки:
 - А –высокопористая водонасыщенная породаколлектору; А1 – высокопористая породаколлектору, насыщенная подвижной нефтью и неподвижной водой; А2 –низкопористая, насыщенная неподвижной водой породанеколлектор.

Построение глубинных моделей плотности

Теоретическое обоснование

Физической основой для подобных корреляционных сопоставлений является зависимость плотности скорости от одних и тех же геологических характеристик изучаемой геологической среды. Например, для карбонатных пород - объемных содержаний известняка, доломита, ангидрита

В аналитическом виде такая зависимость может быть выражена формулами:

(1)

(2)

(3)

(4)

ПЛп=Кп*ПЛж + Кизв*ПЛизв + Кдол*ПЛдол + Канг*ПЛанг DTп =Кп*DTж + Кизв*DТизв + Кдол*DТдол + Канг*DТанг

В уравнении 2 интервальное время можно заменить на скорость, которая связана с ним соотношением:

V=10⁶/DT

Тогда получим:

Vп =106 (Кп/Vж + Кизв/Vизв + Кдол/Vдол + Канг/Vанг)

Здесь: ПЛп, DTn, Vn – плотность, интервальное время и скорость пород; ПЛж, DTж и Vж – плотность, интервальное время и скорость в жидкости-порозаполнителе, ПЛизв, DTизв, Vизв, ПЛдол, DTдол, Vдол, ПЛанг, DTанг, Vдол плотность, интервальное время и скорость в известняке, доломите, ангидрите.

Решая систему уравнений 1-4 относительно коэффициента пористости и принимая в качестве функции плотность пород, а в качестве аргумента скорость (интервальное время) после несложных преобразований можно получить соотношение:

(5)

ПЛрасч = a-10^6*b/Vсейсм+с

где: ПЛрасч – расчетная плотность пород для грубослоистой сейсмической модели; Vсейсм – пластовая скорость изучаемого объекта, который может быть выделен в сейсмическом волновом поле; **a, b u c** - эмпирические коэффициенты, **a** – зависит от минерального состава и отображает скелетные плотностные характеристики изучаемого объекта, **b** – зависит от соотношения плотностных скелетных и флюидных характеристик; **c** – также зависит от соотношения его плотностных скелетных и флюидных характеристик с одновременным учетом минерального состава.

Эмпирические коэффициенты **a**, **b** и с устанавливаются по параметрам петрофизической модели для каждого литолого-стратиграфического комплекса, однородного по своим петрофизическим характеристикам.

Построение глубинных моделей удельных электрических сопротивлений (электрической проводимости)

Теоретическое обоснование

• Расчет удельного электрического сопротивления по параметрам петрофизической модели основан на известных уравнениях Дахнова-Арчи:

параметре пористости – $\mathbf{P}\mathbf{\Pi} = \mathbf{R}\mathbf{B}\mathbf{\Pi}/\mathbf{R}\mathbf{B} = \mathbf{A}/\mathbf{K}\mathbf{\Pi}^{\mathbf{m}}$ параметре насыщенности – $\mathbf{P}\mathbf{H} = \mathbf{R}\mathbf{\Pi}/\mathbf{R}\mathbf{B}\mathbf{\Pi} = \mathbf{B}/\mathbf{K}\mathbf{B}^{\mathbf{n}}$

- Здесь: *Pn, Pн* параметр пористости и насыщенности; *Rвn, Rв, Rn* удельное электрическое сопротивление водонасыщенной породы, воды, насыщающей поровое пространство породы и породы, содержащей УВ и воду; *A, B, m, n* эмпирические коэффициенты, определяемые на керне; *Кn* и *Кв* коэффициенты пористости и водонасыщенности.
- Решая эти уравнения относительно **Rвп** и учитывая, что

 $K_{\Pi} = ((Vck-Vж)*Vизм) / Vж* (Vck-Vизм)/Vж)^{m}$

(7)

 $(\mathbf{8})$

 $(\mathbf{6})$

(7)

- Здесь: Vск, Vж, Vизм скорость в скелете, порозаполняющей жидкости и измеренная (независимым способом) скорость.
- получим:

Кпрасч = (Rв/Квп)*(d / (Vск/Vизм-1) ^m

Здесь **Rв** – является константой для каждого выделенного литолого-скоростного и литологоплотностного и литолого-скоростного комплекса; **d** – эмпирический зависит от минерального состава, а также плотности скелетных и флюидных характеристик

Адаптируя указанные эмпирические коэффициенты в межскважинное пространство вдоль трасс сейсмических профилей и выделив в сейсмическом волновом поле объекты, аналогичные опорным, а также определив их скоростные характеристики, можно построить по ним грубослоистую плотностную модель, а также модель электрических сопротивлений в каждой точке ОГТ

Фрагмент таблицы с расчетными значениями плотности, удельного электрического сопротивления и проводимости

ΟΓΤ			Время	Глубина	Ск-ть суммирования	Интервал. скорость	ПЛ_ГА _Н1	ПЛ_инт_ ЛП-Н1	Rп_ГА_Н 1_02	Y_ГА_ H1-02	Rп_ГА_ Н1_1	Y_ГА_ H1-1
	Координаты				по горизонтному анализу по СР	по СР						
	Х	У										
675	481343.7	6363943	278.4	-218.2	3206.96	3207.0	2.1856	2.1856	4.5440	220.1	4.5440	220.1
676	481368.6	6363941.6	278.2	-218.1	3206.66	3206.7	2.1854	2.1854	4.5425	220.1	4.5425	220.1
677	481393.5	6363940.1	278	-218.0	3206.36	3206.4	2.1853	2.1853	4.5409	220.2	4.5409	220.2
678	481418.4	6363938.7	277.8	-217.9	3206.06	3206.1	2.1852	2.1852	4.5394	220.3	4.5394	220.3
679	481443.3	6363937.3	277.8	-217.9	3205.75	3205.8	2.1851	2.1851	4.5378	220.4	4.5378	220.4
680	481468.1	6363935.9	277.6	-217.8	3205.44	3205.4	2.1850	2.1850	4.5361	220.5	4.5361	220.5
681	481493	6363934.5	277.4	-217.7	3205.13	3205.1	2.1848	2.1848	4.5345	220.5	4.5345	220.5
682	481517.9	6363933.1	277.2	-217.6	3204.81	3204.8	2.1847	2.1847	4.5329	220.6	4.5329	220.6
683	481542.8	6363931.6	277	-217.6	3204.5	3204.5	2.1846	2.1846	4.5313	220.7	4.5313	220.7
684	481567.7	6363930.2	276.8	-217.5	3204.18	3204.2	2.1845	2.1845	4.5296	220.8	4.5296	220.8
685	481592.6	6363928.8	276.6	-217.4	3203.85	3203.9	2.1844	2.1844	4.5279	220.9	4.5279	220.9
686	481617.5	6363927.4	276.6	-217.4	3203.52	3203.5	2.1842	2.1842	4.5262	220.9	4.5262	220.9
687	481642.4	6363926	276.4	-217.3	3203.19	3203.2	2.1841	2.1841	4.5245	221.0	4.5245	221.0
688	481667.3	6363924.5	276.4	-217.2	3202.85	3202.9	2.1840	2.1840	4.5227	221.1	4.5227	221.1
689	481692.2	6363923.1	276.2	-217.1	3202.51	3202.5	2.1838	2.1838	4.5209	221.2	4.5209	221.2
690	481717.1	6363921.7	276.2	-217.1	3202.17	3202.2	2.1837	2.1837	4.5192	221.3	4.5192	221.3
691	481741.9	6363920.3	276	-217.0	3201.81	3201.8	2.1836	2.1836	4.5173	221.4	4.5173	221.4
692	481766.8	6363918.9	276	-216.9	3201.45	3201.5	2.1834	2.1834	4.5155	221.5	4.5155	221.5

Практические примеры расчета плотности, удельного электрического сопротивления и проводимости

Вертикальная плотностная и геоэлектрическая модели по скважине № 2 Андреевская

Вертикальная плотностная, геоакустическая и геоэлектрическая модели по скважине № 260 Желдонская

							H	ДC	БК	ГК-НГК	АК-ГГК	_	н		Кпгис	Vп - Gп	К-т отр	Нуль-сейсмогр	
Свита	оризонт	DEPT,	W	EPTabs,	W	ра керна, м	логия кері	<u>– ДСн, м</u> 0.1 0.9 – <u>САШ, м</u>	- ВК, Омм 1 10000 Rпрсч, Омм	GK, MKR/H 0 20 · NGK, U.E.	DT, MKS/M 100 400 GGKP, г/см3	імограмма	интометрия	ўъемная аодель	• Кпгр, д.ед. -0.1 0.4 Кпобщ, д.ед.	- Vп, км/с 2.5 7.5 - Gп, у.ед.	К11, от.ед. -0.3 0.3	Котр, отн.ед. -0.4 0.4	ультаты лытаний
				D		JT60]	Лито	0.1 0.9	2 10500	0 10	3.1 1.1 ГГКт, г/см3 3.1 1.1	BILIII	Калы	õ ^r	-0.1 0.4 -Кпмз, д.ед. -0.1 0.4	0 25			Рез исі
Усолъская (средняя) (средняя)	Осинский	30(00						And Market										2986 ▼ Сухо
Усольская (низ)	Трапп		-	-260	0				5			?´ Y ■		Y Y					3010
газарская С Казя С Казя	1 СЪ-КУЕХИЯ 2	320	00	-280	0	ł													3200 Cyxo 3256
ігская Собин	-	34(00			2					ŧ.								3397 Сухо
орская Катан (верх) ^г	ображенски В-Тир	200		-300	0				Minhan										3453
Ъ № Чорская (низ)	рфеновский арковский	300		-320	0						<u> </u>			F					3658 <mark>/ Вода</mark> 3689
ифей зерх)	-	38(00	-340															
Ē			-			-			Autor A	Mutan Marine									

Вертикальная плотностная, геоакустическая и геоэлектрическая модели по скважине № 3 Верхне-Катангская

Свита	Горизонт	Глубина, м	Абсолютная глубина, м	Отбор керна,м	Литология керн	дот лектор	ДС - ДС, м 0.2 0.6	БК УЭС, Омм 1 5000 Кпт, Омм 1 5000	ГК-НГК ГК, мкР/час 0 5 НГК, усл.ед 1 11	АК DТанг, мкс, 120 370 АК, мкс/м 120 370	Объемная модель	Кпгр, д.ед. -0.1 0.4 Кпгис, д.ед. -0.1 0.4	Плотность ПЛ плм, г/см3 3 2 - ГГКт, г/см3 3 2 ПЛт_см, г/см3 3 2	Результаты испытаний
Ангарская	Влъчирский	1000 1200	-400 -600 -800						and the second with the					
ими сримиевальская Булайская Булайская	Бараеснай	<u>1400</u> <u>1600</u>	<u>-1000</u> -1200					and when the	James Martin	n and a second s				

Привязка параметров петрофизической и геоакустической

моделей к сейсмическому волновому полю

Привязка основных отражающих горизонтов к однородным по физическим свойствам литолого-стратиграфическим комплексам вдоль трассы сейсмопрофиля, Саяно-Енисейский объект.

Глубинная скоростная модель основных отражающих горизонтов, приуроченных к однородным по физическим свойствам лиолого-стратиграфическим комплексам, вдоль трасы сейсмопрофиля

Глубинная плотностная модель основных отражающих горизонтов, приуроченных к однородным по физическим свойствам литологостратиграфическим комплексам вдоль трасы сейсмопрофиля

Сейсмоплотностной разрез по сейсмическому профилю. Плотности рассчитаны из интервальных скоростей по Диксу

Глубина, км

Привязка основных отражающих горизонтов к однородным по физическим свойствам литолого-стратиграфическим комплексам вдоль трассы сейсмопрофиля, Южно-Вилюйский объект.

Сейсмоскоростной разрез по сейсмическому профилю. Интервальные скорости рассчитаны по Диксу

Сейсмоплотностной разрез по сейсмическому профилю. Плотности рассчитаны из интервальных скоростей по Диксу

Теоретический геоэлектрический разрез (разрез удельных сопротивлений)

Геоэлектрический разрез по ЗСБ

Спасибо за внимание!